Zhong Lin Wang

  • Hightower Chair in Materials Science and Engineering
  • Regents Professor Georgia Institute of Technology, USA


Dr. Zhong Lin (Z.L.) Wang (US citizen) received his Ph.D in Physics from Arizona State University in 1987. He served as a Visiting Lecturer in SUNY (1987-1988), Stony Brook, as a research fellow at the Cavendish Laboratory in Cambridge (England) (1988-1989), Oak Ridge National Laboratory (1989-1993) and at National Institute of Standards and Technology (1993-1995) before joining Georgia Tech as a faculty in 1995. He is the Hightower Chair in Materials Science and Engineering and Regents' Professor at Georgia Tech.

Dr. Wang most important contributions in science are: Pioneered the field of nanogenerators and self-powered sensors; Coined piezotronics and piezo-phototronics for the third generation semiconductors.

Wang’s discovery and breakthroughs in developing nanogenerators establish the principle and technological road map for harvesting mechanical energy from environment and biological systems for powering mobile sensors. He first showed that the nanogenerator is originated from the Maxwell’s displacement current, revived the applications of Maxwell’s equations in energy and sensors, which is 155 years later after the invention of electromagnetic wave based on displacement current.Text Box: A “tree” approach that summarizes Wang’s major original and pioneer contributions in science and technology as well as broad impacts. His research on self-powered nanosystems has inspired the worldwide effort in academia and industry for harvesting ambient energy for micro-nano-systems, which is now a distinct disciplinary in energy science for future sensor networks and internet of things. He coined and pioneered the fields of piezotronics and piezo-phototronics by introducing piezoelectric potential gated charge transport process in fabricating strain-gated transistors for new electronics, optoelectronics, sensors and energy sciences. The piezotronic transistors have important applications in smart MEMS/NEMS, nanorobotics, human-electronics interface and sensors. Wang also invented and pioneered the in-situ technique for measuring the mechanical and electrical properties of a single nanotube/nanowire inside a transmission electron microscope (TEM).

Dr. Wang is a pioneer and world leader in nanoscience and nanotechnology for his outstanding creativity and productivity. He has authored and co-authored 6 scientific reference and textbooks and over 2000 peer reviewed journal articles (83 in Nature, Science and their family journals), 45 review papers and book chapters, edited and co-edited 14 volumes of books on nanotechnology, and held over 60 US and foreign patents. Wang’s Google scholar gives a citation is over 287,000 with an h-index of 259[http://scholar.google.com/citations?user=HeHFFW8AAAAJ&hl=en].

Dr. Wang is ranked #1 among 100,000 scientists worldwide across all fields in 2019, as #5 in the entire career scientific impacts! The ranking was made based on six citation metrics (total citations; Hirsch h-index; coauthorship-adjusted Schreiber hm-index; number of citations to papers as single author; number of citations to papers as single or first author; and number of citations to papers as single, first, or last author) (https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000384; https://data.mendeley.com/datasets/btchxktzyw/2 ). Microsoft Academic: https://academic.microsoft.com/authors/192562407 over 1M scientists published in the Materials Science field in the world; of those 1M, Wang is #1 in Salience, #1 in Citations and #1 in H index. Wang is ranked #14 in Google scholar public profiles across all fields (http://www.webometrics.info/en/hlargerthan100). He has delivered over 1000 plenaries, keynotes, invited and seminar talks at international and national conferences as well as universities and research institutes worldwide.

Student training. He has supervised over 160 postdoctoral fellows and visiting scientists, 53 PhD students and 10 MS student. These young scientists trained by him are now working in government, industry and academia. Among those he has supervised, 10 of them are faculty in US research universities, 10 are faculty in Taiwan, and over 80 are faculty in China, 4 in Korea and 1 in Canada, and 4 in Europe. His students have received over 40 awards from Georgia Tech and professional societies in the U.S., for best paper/poster presentation and other academic achievements.

Honors and awards: Dr. Wang has received numerous international honors and awards. They include: 2020 Celsius Lecture Laureate, Uppsala University, Sweden; 2019 Albert Einstein World Award of Science; 2019 Diels-Planck lecture award; 2018 ENI award in Energy Frontiers (the “Nobel prize” for energy); American Chemical Soc. Publication most prolific author (2017); Global Nanoenergy Prize (2017), The NANOSMAT Society, UK (2017); Distinguished Research Award, Pan Wen Yuan foundation (2017); Outstanding Achievement in Research Innovation award, Georgia Tech (2016); Distinguished Scientist Award from (US) Southeastern Universities Research Association (2016); Thomas Router Citation Laureate in Physics (2015); World Technology Award (Materials) (2014); Distinguished Professor Award (Highest faculty honor at Georgia Tech) (2014); NANOSMAT prize (United Kingdom) (2014); China International Science and Technology Collaboration Award, China, (2014); The James C. McGroddy Prize in New Materials from American Physical Society (2014); ACS Nano Lectureship (2013); Edward Orton Memorial Lecture Award, American Ceramic Society (2012); MRS Medal from Materials Research Soci. (2011); Dow Lecture, Northwestern University (2011); Hubei Province Bianzhong award (2009); Purdy award, American Ceramic Society (2009); John M. Cowley Distinguished Lecture, Arizona State University (2012); Lee Hsun Lecture Award, Institute of Metal Research, China (2006); NanoTech Briefs, Top50 award (2005); Sigma Xi sustain research awards, Georgia Tech (2005); Georgia Tech faculty outstanding research author award (2004); S.T. Li Prize for Distinguished Achievement in Science and Technology (2001); Outstanding Research Author Award, Georgia Tech (2000); Burton Medal, Microscopy Soc. of America (1999); Outstanding Oversea Young Scientists award from NSF China (1998); NSF CAREER (1998).

Dr. Wang was elected as a foreign member of the Chinese Academy of Sciences in 2009, member of European Academy of Sciences in 2002, academician of Academia of Sinica (Taiwan) 2018; International fellow of Canadian Academy of Engineering 2019; fellow of American Physical Society in 2005, fellow of AAAS in 2006, fellow of Materials Research Society in 2008, fellow of Microscopy Society of America in 2010, fellow of the World Innovation Foundation in 2002, fellow of Royal Society of Chemistry, and fellow of World Technology Network 2014. He is an honorable professor of over 10 universities in China and Europe. Dr. Wang is the founding editor and chief editor of an international journal Nano Energy, which now has an impact factor of 16.6. Dr. Wang’s breakthrough researches in the last 15 years have been featured by over 50 media world wide including CNN, BBC, FOX News, New York Times, Washington Post, Reuters, NPR radio, Time Magazine, National Geography Magazine, Discovery Magazine, New Scientists, and Scientific America. Dr. Wang is the #25 in the list of the world’s greatest scientists (http://superstarsofscience.com/scientists).